深度学习详解:基于李宏毅老师“机器学习”课程在线阅读
会员

深度学习详解:基于李宏毅老师“机器学习”课程

王琦 杨毅远 江季编著
开会员,本书免费读 >

计算机网络人工智能19.5万字

更新时间:2024-09-23 17:54:56 最新章节:索引

立即阅读
加书架
下载
听书

书籍简介

本书根据李宏毅老师“机器学习”公开课中与深度学习相关的内容编写而成,介绍了卷积神经网络、Transformer、生成模型、自监督学习(包括BERT和GPT)等深度学习常见算法,并讲解了对抗攻击、领域自适应、强化学习、元学习、终身学习、网络压缩等深度学习相关的进阶算法.在理论严谨的基础上,本书保留了公开课中大量生动有趣的例子,帮助读者从生活化的角度理解深度学习的概念、建模过程和核心算法细节.
品牌:人邮图书
上架时间:2024-09-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

王琦 杨毅远 江季编著
主页

同类热门书

最新上架

  • 会员
    本书从空间信息处理角度出发,将人工智能领域的理论研究与专业实践相结合,完整介绍人工智能方法及其在空间信息处理中的应用,不仅涵盖人工智能领域的基础概念与基本方法,而且探讨知识图谱、计算智能、新兴机器学习、深度学习等前沿技术,同时介绍人工智能在地理文本大数据、遥感影像、激光点云等空间信息处理中的应用实例,具有较强的代表性和启发性。本书可以作为高等院校空间信息与数字技术、遥感科学与技术等专业高年级本科生
    罗欣 侯卫民 许文波编著计算机23.8万字
  • 会员
    本书共分为9章,内容涵盖三个层次:介绍与解读、入门学习、进阶提升。第1-2章介绍与剖析了ChatGPT与提示工程,并从多个学科的角度探讨了提示工程学科。第3-5章演示了ChatGPT的实际运用,教你如何使用ChatGPT解决自然语言处理问题,并为你提供了一套可操作、可重复的提示设计框架,让你能够熟练驾驭ChatGPT。第6-9章讲解了来自学术界的提示工程方法,以及如何围绕ChatGPT进行创新。
    陈颢鹏 李子菡计算机9.7万字
  • 会员
    本书共分为10章,从ChatGPT的基本知识、技术原理和应用场景出发,探讨了如何运用ChatGPT提升职场竞争力。
    朱宁计算机11.4万字
  • 会员
    本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。
    刘丙润编著计算机10.1万字
  • 会员
    本书讲解如何利用AI工具来高效制作和设计PPT,全书共分为8章,前面7章分别介绍了PPT不同制作内容的相关知识和技巧,包括软件操作层面、设计思维层面、素材应用层面的内容,第8章模拟了两个真实工作场景下的PPT使用需求,逐步讲解设计的关键环节,旨在帮助读者解决工作中的实际问题。
    凤凰高新教育编著计算机601字
  • 会员
    本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle
    刘润森计算机0字
  • 会员
    青少年人工智能编程水平测试涵盖从数学逻辑到计算思维、从拖曳程序模块到程序编写、从数学建模到算法设计等多学科知识,能够对学生的多学科知识综合运用能力做出评价;能够通过设计的具体解决方案,对学生的计算思维、创造性思维等能力做出评价;在具体的解决方案中,能够通过设计算法模型和实现算法,对学生掌握和运用编程的能力做出评价。本书结合生活中的实例,系统地介绍了不同进制之间的转换、函数参数的作用域、枚举算法、二
    陈杰编著计算机2万字
  • 会员
    本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大
    于俊 刘淇 程礼磊 程明月计算机12.3万字
  • 会员
    机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容
    赵卫东 董亮编著计算机30.2万字