![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_01.jpg?sign=1739703169-mfCWP66okMQZdESw1ljAAYree3J5J9bc-0-afdb01376b418f65c538d8181310883c)
图3-14 Item2vec和SVD的可视化效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_02.jpg?sign=1739703169-I5NJSJt64l4w1iLT2g1Krjk9Dlkd2FOJ-0-0afb0440836ecbdda57db4e3ff988f77)
图3-16 视频观看倾向与发布时间对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_01.jpg?sign=1739703169-KrZKopocNq4FrF0EHkEb8bRPpJvgVkY4-0-8ab7568f397f96e2368243f335d6168b)
图3-30 Node2vec效果可视化
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_02.jpg?sign=1739703169-bNLD4Ik2iHDnbuzLegUqQbB6BI1VLnrG-0-629d8afe9a98aa10aa4e0032949c801e)
图3-37 DIEN模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_01.jpg?sign=1739703169-U8sRVeNzyAvQp5lSJmOJ5t7PzT7Q5A6B-0-ad6b4660d41d29b04d26ffc0187406df)
图4-2 不同α系数的衰减速度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_02.jpg?sign=1739703169-4JHMCLOE7pedDtcbcKqahnBbgb5XjPsw-0-6ba2e00e46c77146513e9817dc2a89fd)
图4-20 PRAUC与Hit Rate在粗排中的区别
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_01.jpg?sign=1739703169-xNB8ZHbkaNYpXhxPzrZsPnlcscNtMwA0-0-f20141660c4407844cc79dd9b5f7a27b)
图5-15 不同正则化方式的训练和测试误差
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_02.jpg?sign=1739703169-3bM49XFRKpKJ7Lt6S5x8tNDH3ZMJXYEQ-0-4f99d18c0cc9f3ca5077ae62ca66c6f8)
图5-16 DIEN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/7_01.jpg?sign=1739703169-wqtE8M4bC79uJAVEVHbeEkfmRLMsCWEs-0-c73dce2cbf34db372b091dadfed9c57a)
图5-18 DSIN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_01.jpg?sign=1739703169-q55l2ulIRDdSKlXjdQkJjNQNEfGH9P0H-0-414c3af48acdf729e20cf247da365f75)
图5-20 工业级展示广告系统的实时点击率预测系统
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_02.jpg?sign=1739703169-Itr6K9UBcNmKhT1Omzh9bHKJxMYO3OVy-0-f9f5743a59edf8a781fc832bdeda7d66)
图6-3 高斯过程拟合函数的示例
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_03.jpg?sign=1739703169-VxEWhF92n2Ptkz5sPRfIcfJSRklX11yk-0-3cc38ed3be7b079b33b77cdf9c9f535e)
图6-7 (1+1)-ES和(μ+λ)-ES的对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_01.jpg?sign=1739703169-ln3cwf6JeuKzsU0c4vI77btgRfuDF35b-0-081d020550d370cfa28a9b61f69e93bf)
图6-8 OpenAI ES优化的示例一
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_02.jpg?sign=1739703169-GWuYma2Sq6MelC8HhTAaE0S2cy0UKriu-0-0d296ea5e96ecee48b918618e6f21e29)
图6-9 OpenAI ES优化的示例二
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/10_01.jpg?sign=1739703169-Z0JbSVZ71nSxmsiNSfZCga2DtXgeD6Dy-0-9acd13b05f252937a3e1898a349b6493)
图6-16 多个强化学习方法在4种类型上的动作分布
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_01.jpg?sign=1739703169-69BPh6FWSa4eY6FXpk1bp1gPqUnHxHym-0-7e29fe165c6504c125ff616c568b49c3)
图7-3 DLCM在不同相关文档上的优化效果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_02.jpg?sign=1739703169-2tYk9HH1egQ05UzovhpuYW2lzWSBpWKz-0-30b16318aa08c2e1bad54c2bcbe9eb18)
图7-8 Seq2Slate的计算流程
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_01.jpg?sign=1739703169-eODQchl7GDT31LvSAToijzqTKO5emBH3-0-8dd0e28ecbd33351700b1854680c32f1)
图7-10 GRN中的Evaluator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_02.jpg?sign=1739703169-qN8BoB9BnepEt4dWoZfCLBYqVkYNgJB7-0-55d10da6e2e3bade632c103e9ad52126)
图7-11 GRN中的Generator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_01.jpg?sign=1739703169-LoN3R7QgJFK3iRVY0CSOpdiNzfF50kBc-0-cf8a5e321938a94f000ce293c08aaf79)
图7-14 电商场景中的案例对比:list-wise模型与Permutation-wise模型
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_02.jpg?sign=1739703169-5wF7sNG623EXDvqoPrtxtYThzo8XsM84-0-c9d218051188f5fb696a9249c4db875d)
图7-16 PRS框架的整体结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_01.jpg?sign=1739703169-xJ8RddsqFb7GDe2U2SFtFaBaevQKwUK6-0-9da7dc1ce1511022fd1caea1474756a2)
图7-17 基于Beam Search的序列生成方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_02.jpg?sign=1739703169-SK1KaqIWs07B55EFPM1iitdolEQcuTZ9-0-df59ad4c66691ff5047cf2b36c449a5d)
图7-18 DPWN的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_01.jpg?sign=1739703169-LAItcwBALkH868452zcoxOph1W6GKWYT-0-5248181e9db83ef41cbdb62a162f2ec1)
图7-19 流行的端云协同瀑布流推荐系统框架
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_02.jpg?sign=1739703169-aptqirOyX5jaI68fDaBPvktDf7iAUvUq-0-21cfaf3c9f0d99475a63ee25efc8c88e)
图7-22 EdgeRec中的异构用户行为序列建模和上下文感知重排的行为注意力网络
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_01.jpg?sign=1739703169-3jRJYbVViAUHu0iXyRjVEzMsPVgEB303-0-da38461298a1976e24ba3ee2c1259be6)
图7-24 减少模型参数空间的MetaPatch方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_02.jpg?sign=1739703169-LkTuwnkrjiZxHoXUD6dcryIDWRC2vl70-0-5abc103e92fb60c83f40c683f714b7cd)
图7-25 增强云端模型的MoMoDistill方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_03.jpg?sign=1739703169-N0OFNq5TuFtySqiNRRF6Ex3FAmTMTb98-0-550c869a779d2a5002d94f53fc619851)
图7-26 DCCL-e和DIN在所有细分用户群上的推荐效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_01.jpg?sign=1739703169-4f6mLTr5jzeHkv6b6ItYUc2PtCXOLUYt-0-12fee53c521bdb6652384bafb5d7d934)
图8-3 负采样校准前后的概率密度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_02.jpg?sign=1739703169-Pulv2rbw6sOGwkI9eb6gwpgBApZ2xczk-0-d5c2b72bb38ca648fd453067f2720da5)
图9-2 DropoutNet的相关实验结果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_01.jpg?sign=1739703169-WyZMyyUvjwNXB0Jd9kEcODVN8eIYQC6G-0-7b97cae942bd37700a81a53474e168bb)
图9-5 MWUF算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_02.jpg?sign=1739703169-tbBcSVr4hkY40xr1hneZbr9qPeLxPrDC-0-16c5bb2796e7025460107454ffb2e075)
图9-7 Cold & Warm算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_01.jpg?sign=1739703169-aWzJ5W68QiXHWI51O5OhWCTq3MJpUEsj-0-1f372ff7d4197ec645013e51bd68391d)
图9-9 冷启动和非冷启动任务的效果变化趋势
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_02.jpg?sign=1739703169-OpAR28gSZb0hfr8gCTX1KkRHLbdpsh1M-0-f535fb8c22cd9b9e12c98dbfb4e01fb7)
图9-11 数据偏置的说明和它对于模型训练的负向影响
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_03.jpg?sign=1739703169-w73J3w8r0gYGpPetDEGVQCvdO7LLrsas-0-1626fc0f45d7a83aac4c44549f7ea537)
图9-17 CIKM Cup 2016数据集的相关分析
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_01.jpg?sign=1739703169-ELgL6F1zCOyzNqpKlSwx3oZflSX3EYAL-0-3a482688f6f04920f367fa85cbcf265c)
图9-19 属性间的相关性在源领域和目标领域是一致的
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_02.jpg?sign=1739703169-pY6TmJwCEHwcllVNH55n27VQZCCKtcYW-0-24b3483e8eb1cf5d4f80b04ac8b7555c)
图9-20 ESAM算法中多个损失的设计意图
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_01.jpg?sign=1739703169-6ZtYJRcFfujOkmfrOd7tXINSuuQGHKV2-0-2a359601a858c97476bea557d08965b5)
图9-21 T-SNE对数据特征分布的可视化,红色和蓝色分别表示源领域和目标领域
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_02.jpg?sign=1739703169-Ek11bXmrf0tbXKsv63zXhlNejlGFv4q8-0-88b45d56169f2d259922083685454cfa)
图9-22 真实数据上的相关性得分分布对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_01.jpg?sign=1739703169-EIwWQVFM5qX4f3w1Oofx1V6WKhceXaq2-0-92f6bc30cb6b24c7b241e902b401532d)
图9-23 解决协同过滤中长尾问题的对抗网络模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_02.jpg?sign=1739703169-wNW6irWIlZf4Q3sCP2pxmKbN1ZgHhSez-0-e61b20e8af4ef09358bbe6c3a06c9657)
图10-6 层与桶的流量关系